Alteration of pain processing by transcutaneous vagus nerve stimulation

Jens Ellrich2,3, Volker Busch1, Peter Eichhammer1

(1) Department of Psychiatry, University of Regensburg, Regensburg, Germany
(2) Cerbomed GmbH, Preclinical and Clinical Development, Medical Department, Erlangen, Germany
(3) Department of Health Science and Technology, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark

ClinicalTrials.gov Identifier: NCT01174498
Vagus nerve stimulation in awake rats reduces formalin-induced nociceptive behavior and fos-immunoreactivity in trigeminal nucleus caudalis

- 4 experimental groups
 - Left cervical vagus nerve stimulation (VNS)
 - Formalin injection into left vibrissal pad
 - VNS and formalin injection
 - Sham VNS

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Fos-Immunoreactive neurons</th>
<th>Pain behaviour Cumulative time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ipsilateral</td>
<td>Contralateral</td>
</tr>
<tr>
<td>Group 1 VNS only</td>
<td>20.4 ± 5.7</td>
<td>8.8 ± 3.6</td>
</tr>
<tr>
<td>Group 2 Formalin only</td>
<td>68.9 ± 17.6</td>
<td>7.3 ± 4.9</td>
</tr>
<tr>
<td>Group 3 VNS + Formalin</td>
<td>45.8 ± 14.4</td>
<td>14.6 ± 3.5</td>
</tr>
<tr>
<td>Group 4 Sham VNS</td>
<td>5.9 ± 1</td>
<td>3.7 ± 0.8</td>
</tr>
</tbody>
</table>

- VNS inhibits sensory neurons in the brainstem and pain-related behavior on the ipsilateral side.
Left vagus nerve stimulation suppresses experimentally-induced pain

- 2 experimental groups
 - 10 patients with drug resistant epilepsy
 - 12 healthy, age-matched volunteers

- Experimentally-induced pain (hand)
 - Mechanical impact: pain threshold, wind-up
 - Tonic pressure (pinch)

- No effect on mechanical pain threshold.
- Reduction of wind-up.
- Reduction of tonic pressure pain.
- Results suggest influence of VNS on central pain processing.

Kirchner et al., Neurology 55: 1167-71, 2000
Transcutaneous vagus nerve stimulation (t-VNS)

Auricular branch of vagus nerve supplies the concha as shown by:

- **Intracranial section of the vagus nerve in man** (Fay, J Neurol Psychopathol 8: 110-23, 1927)
- **Isolated vagus nerve palsy with herpes zoster** (Ohashi et al., Rinsho Shinkeigaku 34: 928-9, 1994)
- **Auricular syncope** (Thakar et al., J Laryngol Otol 122: 1115-7, 2008)
- **Gastroauricular phenomenon** (Engel, Arch Psychiat Nervenkr 227: 271-7, 1979)
- **Referred, auricular pain secondary to lung neoplasms** (Eross et al., Cephalalgia 23:2–5, 2003)
t-VNS affects pain processing in man – Study design

- Randomized, controlled, crossover study (ClinicalTrials.gov Identifier: NCT01174498)
- 48 healthy volunteers: 24 female, 24 male, 23.3±2.1 years
- 2 sessions with or w/o active t-VNS in randomized order
- Quantitative Sensory Testing (QST) on left and right hand dorsum

![Diagram showing the study design with QST on left and right hand dorsum, and active and sham t-VNS sessions.]

Active t-VNS (25 Hz, 250 μs, tingling)

Sham t-VNS (attached, no current)
t-VNS affects pain processing in man – Results

- Increased pressure pain threshold (PPT) on left hand during t-VNS
 2-way ANOVA: interaction between stimulation and side, p<0.05 (sham vs. t-VNS: 402 vs. 432 kPa)
t-VNS affects pain processing in man – Results

- Increased pressure pain threshold (PPT) on left hand during t-VNS
 2-way ANOVA: interaction between stimulation and side, p<0.05 (sham vs. t-VNS: 402 vs. 432 kPa)

- Reduced mechanical pain sensitivity (stimulus-response function)
 2-way ANOVA: interaction between stimulation and side, p<0.05 (sham vs. t-VNS: 3.2 vs. 2.1)
t-VNS affects pain processing in man – Results

- **Increased pressure pain threshold (PPT) on left hand during t-VNS**
 2-way ANOVA: interaction between stimulation and side, p<0.05 (sham vs. t-VNS: 402 vs. 432 kPa)

- **Reduced mechanical pain sensitivity (stimulus-response function)**
 2-way ANOVA: interaction between stimulation and side, p<0.05 (sham vs. t-VNS: 3.2 vs. 2.1)

- **Reduced sensitivity for sustained heat pain**
 ANOVA: stimulation p<0.001, time p<0.0001

![Graph showing pain intensity over time](image)
Summary and Conclusion

- VNS in rats inhibits sensory neurons in the brainstem and pain-related behavior on the ipsilateral side.
- VNS in epilepsy patients inhibits wind-up and tonic pressure pain. Spinal or even supraspinal mechanisms may be involved.

- t-VNS inhibits deep muscle pain processing on the ipsilateral side.
- t-VNS flattens the stimulus-response function of pinprick pain.
- t-VNS reduces temporal summation of noxious heat.

- t-VNS affects pain processing but does not interfere with innocuous somatosensory processing.
- t-VNS seems to activate CNS mechanisms of pain modulation.
- Future studies will address potential analgesic effects in patients.